Search published articles

Showing 5 results for Densification

H. Momeni, H. Razavi, S. G. Shabestari,
Volume 8, Issue 2 (6-2011)

Abstract: The supersolidus liquid phase sintering characteristics of commercial 2024 pre-alloyed powder was studied at different sintering conditions. Pre-alloyed 2024 aluminum alloy powder was produced via air atomizing process with particle size of less than 100 µm. The solidus and liquidus temperatures of the produced alloy were determined using differential thermal analysis (DTA). The sintering process was performed at various temperatures ranging from the solidus to liquidus temperatures in dry N2 gas atmosphere for 30 min in a tube furnace. The maximum density of the 2024 aluminum alloy was obtained at 610ºC which yields parts with a relative density of 98.8% of the theoretical density. The density of the sintered samples increased to the maximum 99.3% of the theoretical density with the addition of 0.1 wt. %Sn powder to the 2024 pre-alloyed powder. The maximum density was obtained at 15% liquid volume fraction for both powder mixtures.
A. Namiranian , M. Kalantar,
Volume 8, Issue 3 (9-2011)

The process of mullitization of kyanite concentrate was studied at different conditions of heat treatment (1400
– 1600 °C and 0.5 – 3.5 hours) and particle size of raw materials (38-300 ?m). Kyanite concentrate was obtained from
ore-dressing of kyanite deposits of Mishidowan-Bafgh region at 100 km northeastern part of Yazd. The results of
microstructure (shape, distribution and size of the grains) and phase evolution studies by SEM and XRD showed that
total transformation of kyanite to mullite takes place by heat treatment between 1500 –1550 °C during 2.5 hours.. At
temperatures below 1500 °C need-like mullite grains are always produced. At higher temperatures the mullite grains
reveal rounded and platelet morphology. At 1550 °C, the rate of mullitization and densification were improved by
increasing soaking time from 1h to 3h and decreasing particle size of materials from 300 to 38 m
A. Mohammadzadeh, A. Sabahi Namini, M. Azadbeh,
Volume 11, Issue 3 (9-2014)

The rapidly solidified prealloyed alpha brass powder with a size range of 40 to 100 μm produced by water atomization process was consolidated using liquid phase sintering process. The relationships between sintering temperature, physic-mechanical properties and microstructural characteristics were investigated. Maximum densification was obtained at 930 °C, under 600 MPa compacting pressure, with 60 min holding time. The microstructure of the sintered brass was influenced by dezincification and structural coarsening during supersolidus liquid phase sintering. As a consequence of Kirkendall effect atomic motion between Cu and Zn atoms caused to dezincification at the grain boundaries and formation of ZnO particles on the pore surfaces. It was concluded that microstructural analysis is in a well agreement with obtained physical and mechanical properties. Also, the amount of liquid phase, which depends on sintering temperature, results in different load bearing cross section areas, and it affects the type of fracture morphologies.
S. Ghasemi-Kahrizsangi, H. Gheisari-Dehsheikh, M. Boroujerdnia,
Volume 13, Issue 4 (12-2016)

In this study the effect of nano meter size ZrO2 particles on the microstructure, densification and hydration resistance of magnesite –dolomite refractories was investigated. 0, 2, 4, 6 and 8 wt. % ZrO2 particles that were added to magnesite –dolomite refractories containing 35 wt. % CaO. The Hydration resistance was measured by change in the weight of specimens after 72 h at 25℃ and 95% relative humidity. The results showed with addition of nano meter size ZrO2 particles, the lattice constant of CaO increased, and the bulk density and hydration resistance of the specimens increased while apparent porosity decreased. With the addition of small amount ZrO2 the formation of CaZrO3 phase facilitated the sintering and the densification process. The mechanism of the nano meter size ZrO2 particles promoting densification and hydration resistance is decreasing the amount of free CaO in the specimens.

H. Momeni, S. Shabestari, S.h. Razavi,
Volume 17, Issue 4 (12-2020)

In this research, densification and shape distortion of the Al-Cu-Mg (Al2024) pre-alloyed powder compact in the supersolidus liquid phase sintering process (SLPS) were investigated. The effect of Sn on the sintering process was also studied. The powders were compacted at pressures ranging from 100 to 500 MPa in a cylindrical die. The sintering process was performed in a dry N2 atmosphere at various temperatures (580-620 ºC) for 30 min at a heating rate of 10 ºCmin-1. Results showed that the onset of densification process was observed at 600ºC and onset of distortion was occurred at 610ºC. Addition of 0.1 wt. %Sn to the alloy has increased the distortion of the samples produced from Al-Cu-Mg pre-alloyed powder, but their densification has been improved. The compact pressure of 200MPa caused the complete densification at the optimum sintering temperature and at the compact pressures greater than 200MPa; the sintered density was independent of green density. 

Page 1 from 1     

© 2019 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb