Search published articles


Showing 2 results for Ghaffari

T. Ebadzadeh, S. Ghaffari, M. Alizadeh, K. Asadian, Y. Ganjkhanlou,
Volume 16, Issue 1 (March 2019)
Abstract

The densification behavior, structural and microstructural evolution and microwave dielectric properties of Li2TiO3 + xZnO (x = 0, 0.5, 1, 1.5, 2, 3, and 5 mol%) ceramics have been investigated using X-ray diffraction, Field Emission Scanning Electron Microscopy, Raman spectroscopy and microwave resonant measurement. The Maximum density of 3.33 g/cm3 was obtained in Li2TiO3 + 2ZnO ceramic at low sintering temperature of 1100˚C. SEM investigations revealed good close packing of grains when x = 2 and preferential grain growth when x ≥ 3. The maximum values of Q × f = 31800 GHz and εr = 22.5 were obtained in Li2TiO3 + 3ZnO and Li2TiO3 + 2ZnO compositions, respectively. The observed properties are attributed to the microstructural evolution and grain growth (first case) or high density of the obtained ceramic (second case).
 
Mohammad Derakhshani, Saeed Rastegari, Ali Ghaffarinejad,
Volume 21, Issue 2 (June 2024)
Abstract

In this research, a nickel-tungsten coating as a catalyst for hydrogen evolution reaction (HER) with different current densities was synthesized and the resulting electrocatalytic properties and morphology were assessed. Linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), and chronoamperometry in 1 M NaOH were used to evaluate the electrocatalytic activity for HER. By increasing the current density of electrodeposition up to 500 mA/cm2, a columnar morphology was observed. The cyclic voltammetry test (CV) revealed that when the plating current density increases, Cdl has increased from 248 to 1310 µF/cm2 and the active surface area increases 5 times. The results showed that by modifying the coating morphology, the current density of the hydrogen evolution increased up to two times.
 

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb