Search published articles


Showing 2 results for Sakhaei

Karaminezhaad M., Maghsoudi A.a., Nozhati R., Sakhaei A.,
Volume 1, Issue 4 (Jul 2004)
Abstract

A large number of reinforced concrete structures subjected to chloride ions. Two basicapproaches for preventing corrosion of reinforcing steel embedded in concrete are: Increasing theconsolidation of concrete and using different coating on rebars. In present research steel rebarsare coated in different ways: a) 40 µm of zinc electroplated on steel rebar b) Zinc powder withepoxy paste (zinc rich). The rebars were placed in a macrocell design according to ASTM G109-92. Concrete operations were done with mixture designs of high and normal strength concrete.The results show corrosion decrease of zinc coated rebars.
F. Sakhaei, E. Salahi, M. Eolya, I. Mobasherpour,
Volume 13, Issue 4 (December 2016)
Abstract

Up to now, lots of materials such as active carbon, iron, manganese, zirconium, and metal oxides have been widely used for removal of dyes from contaminated water. Among these, ferrite nanoparticle is an interesting magnetic material due to its moderate saturation magnetization, excellent chemical stability and mechanical hardness. Graphene, a new class of 2D carbonaceous material with atom thick layer features, has attracted much attention recently due to its high specific surface area. Reduced graphene oxide (rGO) has also been of great interest because of its unique properties, which are similar to those of graphene, such as specific surface area, making it an ideal candidate for dye removal. Thus far, few works have been carried out on the preparation of CoFe2O4-rGO composite and its applications in removal of contaminants from water. In this paper, CoFe2O4 reduced graphene oxide nanocomposite was fabricated using hydrothermal process. During the hydrothermal process, the reduction of graphene oxide and growth of CoFe2O4 simultaneously occurred on the carbon basal planes under the conditions generated in the hydrothermal system. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy contaminant and UV-Vis spectroscopy as the analytical method. The experimental results suggest that this material has great potential for treating Congo red contaminated water.



Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb