Search published articles


Showing 2 results for Shahmohamadi

E. Shahmohamadi, A. Mirhabibi, F. Golestanifard,
Volume 16, Issue 3 (September 2019)
Abstract

An accurate prediction of reaction kinetics of silicon nitridation is of great importance in designing procedure of material production and controlling of reaction. The main purpose of the present study is to investigate the effect of temperature on the kinetics of reaction bonded silicon nitride (RBSN) formation. To achieve this, nitrogen diffusion in the silicon nitride layer is considered as a reaction controlling factor and sharp interface method based on this theory is used to develop the analytical model. In the developed model, the variations in the size of silicon particles are calculated for the whole reaction. In the experimental phase, the extent of nitridation is measured for different reaction temperatures and 4 different reaction times and then, the occurrence of full nitridation is shown by EDS analysis. Furthermore, an analytical approach was established for describing the kinetics of compound formation and the performance of the developed model is evaluated through statistical analysis. There was good agreement between experimental data and predictions of the developed model which demonstrates the accuracy of considered presumptions and reaction mechanisms. An accurate prediction of reaction kinetics of silicon nitridation is of great importance in designing procedure of material production and controlling of reaction. The main purpose of the present study is to investigate the effect of temperature on the kinetics of reaction bonded silicon nitride (RBSN) formation. To achieve this, nitrogen diffusion in the silicon nitride layer is considered as a reaction controlling factor and sharp interface method based on this theory is used to develop the analytical model. In the developed model, the variations in the size of silicon particles are calculated for the whole reaction. In the experimental phase, the extent of nitridation is measured for different reaction temperatures and 4 different reaction times and then, the occurrence of full nitridation is shown by EDS analysis. Furthermore, an analytical approach was established for describing the kinetics of compound formation and the performance of the developed model is evaluated through statistical analysis. There was good agreement between experimental data and predictions of the developed model which demonstrates the accuracy of considered presumptions and reaction mechanisms.
E. Shahmohamadi, A. Mirhabibi, F. Golestanifard,
Volume 17, Issue 1 (March 2020)
Abstract

In the present study, a soft computing method namely the group method of data handling (GMDH) is applied to develop a new and efficient predictive model for prediction of conversion percentage of silicon. A comprehensive database is obtained from experimental studies in literature. Several effective parameters like time, temperature, nitrogen percentage, pellet size and silicon particle size are considered. The performance of the model is evaluated through statistical analysis. Moreover, the silicon nitridation was performed in 1573 k and results were evaluated against model results for validation of the model. Furthermore, the performance and efficiency of the GMDH model is confirmed against the two most common analytical models. The most effective parameters in estimating the conversion percentage are determined through sensitivity analysis based on the Gamma Test. Finally, the robustness of the developed model is verified through parametric analysis.

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb