Search published articles


Showing 164 results for Tic

M. Rezvani,
Volume 8, Issue 4 (12-2011)
Abstract

The effect of Y2O3, CeO2, P2O5, ZrO2 and TiO2 in single, double and triple form on crystallization mechanism of Li2OAl2O3- SiO2(LAS) glass-ceramic system was investigated .The nucleation and crystallization peak temperatures of optimized samples in each group were determined by Ray & Day method .The crystalline phase was determined by the X-ray diffractometery .The micro-structure of the samples was studied by SEM techniqe .Crystallization activation energy ,E, and kinetic constants(n ,m) were determined by differential thermal analysis (DTA) through Marotta and Augis-Bennet methods .According to the results ,the Avrami constants(m ,n) derived from the Marotta and Augis- Bennett, glasses containing both ZrO2 and TiO2 nuclei were showed bulk crystallization .The crystallization mechanism of specimens containing ZrO2, TiO2 and CeO2 in the triple nuclei series represent two-dimensional bulk crystallization .By comparison of Avrami constants and activation energy of crystallization of optimized samples with other results they gave much lower value of E(255.5 kJ/mol) and higher value of n in 4.38.The lattice constants of the main phase( -eucryptite solid solution)in samples were determined according to the XRD results
P. Samadi, M. Reza Afshar, M. R. Aboutalebi, S. H. Seyedein,
Volume 9, Issue 1 (3-2012)
Abstract

Electrochemical coating processes are significantly affected by applied magnetic fields due to the generation of electromagnetic forces. The present research work has been undertaken to study the effect of coating parameters such as current density and alumina concentration on the characteristics of Ni-Al2O3 composite coating under static magnetic field. Ni-Al2O3 composite coating was applied on a mild steel substrate using conventional Watts solution containing Al2O3 particles with and without magnetic field. The coating microstructure and Al2O3 particle density in the coating layer were examined by scanning electron microscopy (SEM). It was found that the applied magnetic field made the coating structure finer and leads to the increases of the particle content in the coating. However, the results confirmed that the magnetic forces inversely affected the particle density in the coating at higher current density than that of normal coating process.


Y. Safaei-Naeini, M. Aminzare, F. Golestani-Fard, F. Khorasanizadeh, E. Salahi,
Volume 9, Issue 1 (3-2012)
Abstract

Ultraviolet–Visible (UV–Vis) spectroscopy was used, in the current investigation, to explore the dispersion and stability of titania nanoparticles in an aqueous media with different types of dispersants. Hydrochloric and nitric acids as well as ammonia were used to determine the stability of the suspension in the acidic region (pH=2.5) and basic area (pH=9.5), respectively. In addition, for measuring sustainability of suspension and creating steric, and electrosteric repulsive forces, ethylene glycol and ethylene glycol plus ammonia were employed, respectively. UV–V is
spectrometry was applied to realize the effect of nano titania concentrations and different types of dispersants of samples containing different amounts of nano titania and different types of dispersants on stability of TiO2-containing suspensions. In addition, the stability of dispersion could be evaluated in colloidal mixtures containing ethylene glycol plus ammonia. It was demonstrated that the mixtures containing ethylene glycol plus ammonia were stable over a period of 4 days. To support the UV–Vis results, other techniques such as atomic force microscopy (AFM) and scanning electron microscopy (SEM) were employed to study the degree of agglomeration of titania nanoparticles in terms ofmorphology and size.
M. Zandrahimi, A. Rezvanifar,
Volume 9, Issue 1 (3-2012)
Abstract

Abstract: Cold working performed before an aging treatment has a significant effect on size and amount of precipitate produced. This could be caused by the increase in defect density, such as vacancies and dislocations. In this research, the Al-Cu-Si alloy was solution-treated, wear-tested and then artificially aged for a period of 1–5 h. Changes in the amount of precipitate, in the lattice parameter of the matrix, and in the precipitates are measured by X-ray diffraction and then calculated.It was observed that performing a wear test before the aging treatment was done significantly increased the amount of precipitate, while wear rate decreased.
Karmous Mohamed Salah,
Volume 9, Issue 2 (6-2012)
Abstract

Atomistic simulations are carried out for zeolite with ABW framework. The structure is modeled and force field simulations are preformed to investigate its elastic properties, bulk, shear modulus and auxeticity. Bulk moduli (Ks), Shear moduli (G), and Poissons ratios (ν) were found to be Ks=79.71725 GPa, G=16.93265 GPa, νxy = -0.2207, νxz= -0.5730, νyx= -0.71717, νyz=0.87013, νzx= -0.33097 and νzy=1.54568 for ABW the negative value of Poisson’s ratios reflects an auxetic behavior of material. An evaluation of the directional young’s moduli shows that the compressibility of ABW is not uniform along [100], [010] and [001] axes. All calculations were performed using GULP program.
M. Ghamari, B. Mirhadi,
Volume 9, Issue 2 (6-2012)
Abstract

Abstract: Glassy samples with xTiO2 .3SiO2 .Na2O composition that (8≤x≤40) (molar) were casted in refractory steel molds after melting at air as parallel palates. After polishing and getting to desire thickness, UV-VIS spectrometry in 200 -1100 nm was measured on samples. Glass density was measured by a sensitive micro balance and was found that by increasing titanium dioxide of glasses, glass density increases. Results from UV-VIS spectroscopy show that increase of titanium dioxide decreases light transmission and this value reaches zero for sample with 40 molar percent of titanium dioxide. One reason of this reduction is formation of crystalline phase in glass, in which, by increasing titanium content crystalline phase will be increased, results of X-ray diffraction and electron microscopy confirm this claim.
M. R. Parsa, M. Soltanieh,
Volume 9, Issue 2 (6-2012)
Abstract

In this research, the nickel oxide was dissolved in cryolite at temperatures of 880, 940 and 1000°C. In order to reduce the nickel oxide, aluminum was added to the salt. Simultaneously the nickel oxide was reduced and Al3Ni2 intermetallic compound was formed. In the duration intervals of 2.5-40 minutes samples of the salt and metallic phases were taken. The variation of the nickel content in metallic and salt samples was determined by the AAS. The results indicate that increasing the temperature and duration has a positive effect on the reduction process and Al3Ni2 intermetallic compound formation. The nickel content in the metallic sample has its highest amount at 1000°C in 10 minutes. Furthermore, practical results of the studies of nickel content variations in metallic and salt samples confirm the data obtained from theoretical calculations.
Simin Janitabar-Darzi, Alireza Mahjoub,
Volume 9, Issue 3 (9-2012)
Abstract

Yellow-colored nitrogen doped TiO2 photocatalyst and a pure TiO2 powder were synthesized via sol-gel method using TiCl4 and urea as raw materials. However, the synthesis procedure for nitrogen doped TiO2 was catalyzed by acid that dialed with controlled precipitation and slow nucleation. According to XRD analysis, the nitrogen doped TiO2 consisted of anatase phase of titania which was a significant achievement regarding its possible photocatalytic applications. The band gaps of nitrogen doped TiO2 and pure TiO2 were estimated from UV-Vis spectroscopy data to be 2.8 and 3.3 ev, respectively. Photocatalytic properties of the nitrogen doped TiO2 nanocatalyst and pure TiO2 were compared for degradation of crystal violet dye in visible light irradiation. In comparison to pure TiO2, nitrogen doped TiO2 showed superior photocatalytic efficiency towards the dye.
H. R. Jafarian, E. Borhani,
Volume 10, Issue 2 (6-2013)
Abstract

In this research, variant selection of martensite transformed from ultrafine-grained (UFG) austenite fabricated by accumulative roll bonding (ARB) process and subsequent annealing was investigated with respect tomorphology of parentaustenitic phase. The results show that the original shape of austenite grain is very effective factor in determiningthe preferred variants of martensite transformed from the elongated ultrafine-grained austenite fabricated by 6-cycles via the ARB process. Annealing treatment of the austenitic samples subjected to the 6-cycle ARB processed at 873 K for 1.8 ks suppressed the variant selection by changing the morphology of austenite grains from elongated ultrafine-grains to fully-recrystallized and equiaxed fine-grains
N. Bahremandi Tolou, M. H. Fathi, A. Monshi, V. S. Mortazavi,f. Shirani, M. Mohammadi,
Volume 10, Issue 2 (6-2013)
Abstract

Abstract:In recent years, there have been many attempts to improve the properties of dental amalgam. The aim of the present investigation was fabrication and characterization of dental amalgams containing TiO2 nanoparticles and evaluation of their compressive strength, antibacterial and corrosion behavior. In this experimental research, TiO2 nanoparticles (TiO2 NPs) were added to reference amalgam alloy powder and then, dental amalgam was prepared. In order to investigate the effect of TiO2 NPs on properties of dental amalgam, 0, 0.5, 1, 2 and 3 wt. % of TiO2 NPs were added to amalgam alloy powder and the prepared composite powder was triturated by a given percent of mercury. Xray diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy-Dispersive Spectroscopy (EDS) techniques were used to characterize the prepared specimens. Potentiodynamic polarization corrosion tests were performed in the Normal Saline (0.9 wt. % NaCl) Solutions as electrolytes at 37°C. The results showed that the corrosion behavior of the dental amalgam with 0.5 or 1 wt. % TiO2 NPs is similar to the corrosion behavior of the reference amalgam, while with increasing the weight percent of TiO2 NPs, the corrosion rate increases. Also, the results of this investigation indicated that adding TiO2 NPs in amounts of up to 1 wt. % to amalgam alloy powder improve compressive strength of dental amalgam and has no destructive influence on its corrosion behavior. As well as, according to antibacterial results, TiO2 NPs can increase the biocompatibility and antibacterial activity of dental amalgam. The results of present study suggest that amalgam/ TiO2 NPs nanocomposite with 1% of TiO2 NPs could be regarded as a biocompatible and bioactive dental material that provide better characters for dental applications.
S. M. Mostafavi Kashani, H. Rhodin, S. M. A. Boutorabi,
Volume 10, Issue 3 (9-2013)
Abstract

The influences of age hardening and HIP (Hot Isostatic Pressing) on the mechanical properties of A356 (Al 7Si 0.6 Mg) casting alloys were studied. Cast bars were homogenized, heated and maintained at a temperature of 540°C for a duration of 2 hours, followed by rapid cooling in a polymeric solution. The castings were age hardened at 180°C for a duration of 4 hours before being subjected to HIP process at pressure of 104 MPa for 2 hours. The results indicated that the age hardening process used improved the tensile properties of A356. The HIP process removed the internal surface-connected porosities and improved the ductility of the samples significantly. Additionally, HIP reduced scattering in the tensile test data
F. Mahzoon, S. A. Behgozin, N. Afsar Kazerooni, M. E. Bahrololoom,
Volume 10, Issue 3 (9-2013)
Abstract

The wear mechanism of plasma electrolytic nitrocarburised (PEN/C) 316L stainless steel samples was studied after a pin on disc wear test. The surface morphology of samples after application of PEN/C process was studied using scanning electron microscope technique. The sliding tracks resulting from the wear tests on the treated specimens indicated no signs of plastic deformation and adhesive wear, but the slider wear particles were trapped in the micro-craters of the counterface. The results showed that this mechanism may further improve the tribological performance of the system by increasing the wear resistance and lowering friction. PEN/C treated surfaces are therefore believed to have the potential to limit metal-to-metal wear mechanisms on a microscale, if contact pressures are sufficiently low
M. Sheikhshab Bafghi, M. Karimi, M. Adeli,
Volume 10, Issue 4 (12-2013)
Abstract

In the present study, reduction of zinc oxide from the pellets made of steelmaking electric arc furnace dust has been investigated. Effects of such parameters as the type of carbon material (graphite, coke and charcoal) as well as time and temperature on the reduction reaction have been examined. The reduced (dimensionless) time method was applied to perform a kinetic analysis of the system. Experimental results showed that increasing the temperature in the range of 925-1150°C results in a remarkable increase in the reduction rate. It was also shown that the reduction process is controlled by chemical reaction. Meaningful difference in the activation energy values calculated for reduction with graphite (24.75 kcal/mol), coke (18.13 kcal/mol) and charcoal (11.52 kcal/mol) indicate the predominant role of chemical reaction (carbon gasification) in the overall reaction rate and its rate-controlling mechanism. Carbothermal reduction of pelletized EAF dust proved to be an efficient reduction method, so that above 90% reduction was achieved in about one hour at temperatures around 1100°C.
A. Najafi, F. Golestani-Fard, H. R. Rezaie,
Volume 11, Issue 1 (3-2014)
Abstract

Mono dispersed nano SiC particles with spherical morphology were synthesized in this project by hydrolysis and condensation mechanism during sol gel processing. pH, temperature and precursor’s ratio considered as the main parameters which could influence particles size. According to DLS test results, the smallest size of particles in the sol (<5nm) was obtained at pH<4. It can be observed from rheology test results optimum temperature for achieving nanometeric gel is about 60 ˚C. The optimum pH values for sol stabilization was (2-5) determined by zeta potentiometery. Si 29NMR analysis was used in order to get more details on final structure of gel powders resulted from initial sol. X-ray diffraction studies showed sythesized powder consists of β-SiC phase. Scanning electron microscopy indicated agglomerates size in β-SiC synthesis is less than 100 nm. Finally, TEM studies revealed morphology of β-SiC particles treated in 1500˚C and after 1hr aging is spherical with (20-30) nm size
M. Kadkhodaee, H. Daneshmanesh, B. Hashemi, J. Moradgholi,
Volume 11, Issue 1 (3-2014)
Abstract

Accumulative roll-bonding process (ARB) is an important severe plastic deformation technique for production of the ultrafine grained, nanostructured and nanocomposite materials in the form of plates and sheets. In the present work, this process used for manufacturing Al/SiO 2 nanocomposites by using Aluminum 1050 alloy sheets and nano sized SiO 2 particles, at ambient temperature. After 8 cycles of ARB process, the tribological properties and wear resistance of produced nanocomposites were investigated. The wear tests by abrasion were performed in a pinon-disc tribometer. Results show that by increasing ARB cycles and the amount of nano powders, the friction coefficient of produced nanocomposites decreases.
A. Khakzadshahandashti, N.varahram, P. Davami,
Volume 11, Issue 2 (6-2014)
Abstract

This article examines the Weibull statistical analysis that was used for investigating the effect of melt filtration on tensile properties and defects formed inside the casting. Forming and entrapping of double oxide films have been explained by using the context of critical velocity of melt in the runner. SutCast software results were used to examine the amounts of the velocity of melt as such. SEM/EDX analysis is used to observe the presence of double oxide films in the fracture surfaces of the tensile specimens. The article goes on to propose that castings made with foam filters with smaller pores show higher mechanical properties and reliability due to higher Weibull modulus and fewer defects
M. Ghobeiti Hasab, F. Rashchi, Sh. Raygan,
Volume 11, Issue 2 (6-2014)
Abstract

In this paper, gold leaching of a refractory sulfide concentrate by chloride–hypochlorite solution was investigated and effects of stirring speed, temperature and particle size on the leaching rate were reported. Experimental data for leaching rate of gold were analyzed with the shrinking–core model. Results were consistent with chemical reaction control mechanism in the first 1 h of leaching and diffusion control mechanism in the second 1 h. Apparent activation energy also was found to be 22.68 kJ/mol in the first step and 3.93 kJ/mol in the second step of leaching.
S. Ahmadi, H.r. Shahverdi, H. Arabi,
Volume 11, Issue 3 (9-2014)
Abstract

This study is focused on the effects of electroslag remelting by prefused slag (CaO, Al2O3, and CaF2) on macrostructure and reduction of inclusions in the medical grad of 316LC (316LVM) stainless steel. Results showed that in order to obtain uniform ingot structures during electroslag remelting, the shape and depth of the molten pool should be carefully controlled. High melting rates lead to deeper pool depths and interior radial solidification characteristics. Furthermore, decrease in the melting rate caused more reduction of non-metallic inclusions. In practice, large shrinkage cavities formed during the conventional casting process in the primary ingots were the cause of the fluctuation in the melting rate, pool depth and extension of equiaxal crystals zone
Z. Abadi, S. M. Bidoki, V. Mottaghitalab, A. Benvidi, A. Shams-Nateri,
Volume 11, Issue 3 (9-2014)
Abstract

Silver nanoparticles are being given considerable attention because of their interesting properties and potential applications. One such exploitable use is as the major constituent of conductive inks and pastes used for printing various electronic components. This paper presents a novel direct-writing process for fabrication of the first deposited silver nanoparticles (AgNPs) (50-200nm) electrode via a thermal inkjet printer. In this method, AgNPs were chemically deposited by ejection of ascorbic acid and silver nitrate solutions onto different substrates such as paper and textile fabrics. Silver deposited patterns were used as electrodes in different electrochemical experiments and their morphology was also investigated in SEM observations. The highest conductivity of deposited electrodes obtained on paper as the substrate was found to be around 5.54x105 S/m. Inkjet fabricated electrodes exhibited acceptable electrochemical behavior in experiments designed for measuring the concentration of hydrogen peroxide as a fundamental procedure for early determination of glucose. This novel inkjet silver deposition technique is introduced to be considered as a promising method for ultimate single step fabrication of different electrochemical bio-sensors.
S. Asadi,
Volume 11, Issue 4 (12-2014)
Abstract

Coating of a surface by droplet spreading plays an important role in many novas industrial processes, such as plasma spray coating, ink jet printing, nano safeguard coatings and nano self-assembling. Data analysis of nano and micro droplet spreading can be widely used to predict and optimize coating processes. In this article, we want to select the most appropriate statistical distribution for spread data of aluminum oxide splats reinforced with carbon nanotubes. For this purpose a large class of probability models including generalized exponential (GE), Burr X (BX), Weibull (W), Burr III (BIII) distributions are fitted to data. The performance of the distributions are estimated using several statistical criteria, namely , Akaike Information Criterion (AIC), Baysian Information Criterion (BIC), LogLikelihood (LL) and Kolmogorove-Smirnove distance. Also, the fitted plots of probability distribution function and quantile-quantile (q-q) plots are used to verify the results of different criteria. An important implication of the present study is that the GE distribution function, in contrast to other distributions, may describe more appropriately in these datasets.

Page 3 from 9     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb