Search published articles


Showing 649 results for Type of Study: Research Paper

Lakshmiprasad Maddi, Srinivas R Gavinola, Atul Ballal,
Volume 21, Issue 2 (6-2024)
Abstract

High thermal conductivity, low coefficient of thermal expansion makes P92 a candidate material for Ultra Super Critical (USC) power plant piping. Microstructural features viz., high dislocation density, lath martensitic microstructure, fine precipitates of M23C6 and MX (X=C, N) contribute towards the high rupture strength. However, most components are typically subjected to multiaxial stress conditions; either metallurgical (weldments), or mechanical (change in the dimension). The present work involves stress rupture testing of circumferential 60° V- notch specimens in the range of 300 – 375 MPa at 650 °C. Notch strengthening effect was observed; with rupture times ranging from 200 – 1300 h. Scanning electron microscopy (SEM) fractography revealed mixed mode of fracture with brittle fracture observed at notch root, while ductile fracture was seen at the centre of the specimen.
 

Fathi Brioua, Chouaib Daoudi,
Volume 21, Issue 2 (6-2024)
Abstract

We have modeled theoretical incident photon-to-current electricity (IPCE) action spectra of poly(3-hexylthiophene) (P3HT) and [6,6]-Phenyl C61 butyric acid methyl ester active layer bulk-heterojunction. By the two-dimensional optical model of a multilayer system based on the structure of Glass substrate / SiO2 /ITO/ PEDOT: PSS /P3HT: PCBM(1:1)/Ca/Al, the optical responses of the device have been computed for different photoactive layer and Ca layer thicknesses to found an optimal structure which allows obtaining the maximum absorption localized in the active layer and high device performance. The electric field intensity, energy dissipation, generation rate, and IPCE have been computed to enhance the device's performance. The finite element method executes the simulation under an incident intensity of 100 mW/cm2 of the 1.5 AM illumination. It was found that the optimum structure is achieved by a 180 nm photoactive layer and 5 nm Ca layer thicknesses.


Rakhesh V, Sreedev P, Ananthakrishnan A,
Volume 21, Issue 2 (6-2024)
Abstract

Organic and Perovskite solar cells have attracted a lot of attention recently since they can be used with flexible substrates and have lower manufacturing costs. The configuration and materials employed in their construction, including the Electron Transport Layer (ETL), active layer, electrode contact, and hole transport layer greatly influence the stability and performance of these solar cells. This research focuses on the simulation of solar cells, specifically utilizing zinc oxide (ZnO) as the electron transport layer. A 0.1 molar ZnO thin film was prepared from Zinc acetate salt and was deposited on a glass substrate using the cost effective Successive Ionic Layer Adsorption and Reaction (SILAR) method. In-depth investigations were carried out on several factors, including structural, surface, optical and numerical analysis. The obtained parameters were utilized in the General-Purpose Photovoltaic Device Model (GPVDM) software to perform numerical simulations of the organic solar cell and Perovskite solar cell. Both Organic solar cells and Perovskite solar cells were designed numerically and through careful observations, electrical parameters like Open circuit Voltage (Voc), Short circuit current (Jsc), Fill Factor (FF), and Power Conversion Efficiency (PCE) were identified. The studies indicate the promising performance of simulated solar cells with SILAR-synthesized ZnO thin film as the ETL.
 
Padmanaban Ramasamy,
Volume 21, Issue 2 (6-2024)
Abstract

The present investigation delves into the friction stir welding of AA5052 and AZ31B alloys, examining the effects of three distinct parameter configurations. A face-centered central composite design, structured to incorporate full replications for comprehensive and reliable analysis, was employed. A pivotal element of this study is implementing an advanced deep neural network (DNN) model. Characterized by its varied activation functions, structural parameters, and training algorithms, this DNN model was adeptly configured to precisely predict the tensile strength and microhardness of the welded joints. This comprehensive examination also included a quantitative assessment of the parameter effects on joint microstructure and mechanical properties. Flawless welds with exemplary surface characteristics were attained through a meticulously optimized set of parameters: a tool rotation speed set at 825 rpm, a tool traverse speed of 15 mm/min, and a shoulder diameter of 18 mm. During the welding process, the formation of intermetallic compounds, specifically Al12Mg17 and Al3Mg2, was observed. An exceptionally refined grain size of 2.23 µm was observed in the stir zone, contributing to the joint's enhanced tensile strength, measured at 180 MPa. The hardness of the specimen fabricated at the high rotational speed is more elevated due to the brittle intermetallic compounds. The better mechanical properties are related to the reduction and distribution of intermetallic compounds formed in the interface zone.  
Alireza Zibanejad-Rad, Ali Alizadeh, Seyyed Mehdi Abbasi,
Volume 21, Issue 2 (6-2024)
Abstract

Pressureless sintering was employed at 1400 °C to synthesize Ti matrix composites (TMCs) reinforced with in-situ TiB and TiC reinforcements using TiB2 and B4C initial reinforcements. The microstructure and wear behavior of the synthesized composites were evaluated and compared and the results showed that B4C caused the formation of TiB-TiC in-situ hybrid reinforcements in the Ti matrix. Also, TiB was in the form of blades/needles and whiskers, and TiC was almost equiaxed. Moreover, the volume fraction of the in-situ formed reinforcement using B4C was much higher than that formed using TiB2. In addition, although the hardness of the B4C-synthesized composites was higher, the composite synthesized using 3 wt.% TiB2 exhibited the highest hardness (425 HV). The wear test results showed that the sample synthesized using 3 wt.% TiB2 showed the lowest wear rate at 50 N, mainly because of its higher hardness. The dominant wear mechanism in the samples synthesized using 3 wt.% B4C was abrasive and delamination at 50 N and 100 N, respectively while in the samples synthesized 3 wt.% TiB2, a combination of delamination and adhesive wear and adhesive wear was ruling, respectively.

 
Farah Zulkifli,
Volume 21, Issue 2 (6-2024)
Abstract

Researchers are increasingly focusing on green synthesis methods for silver nanoparticles due to their cost-effectiveness and reduced environmental impact. In this study, we utilized an edible bird's nest (EBN), a valuable economic resource, as the primary material for synthesizing silver nanoparticles using only water as the solvent. Metabolite profiling of the EBN extract was conducted using LC-QTOF-MS in positive mode (ESI+), revealing the presence of lipids, glycosides, peptides, polysaccharides, and disaccharides. Upon the addition of silver nitrate to the aqueous EBN extract, noticeable color changes from transparent to brown indicated the successful formation of AgNPs. Subsequent characterization of these silver nanoparticles involved UV-Visible spectroscopy, which revealed an absorption peak at 421 nm. Further characterization was carried out using FESEM, ATR-FTIR spectroscopy, and EDX analysis. The involvement of phenolic agents, proteins, and amino acids in reducing the silver particles was confirmed. The synthesized nanoparticles exhibited a spherical shape, and a particle size ranging from 10 to 20 nm. The presence of elemental silver was confirmed by a strong, intense peak around 3 keV in the EDX spectrum. To assess their potential, the antibacterial properties of the silver nanoparticles against Escherichia coli and Staphylococcus aureus were evaluated using the agar diffusion method.
 
Satish Ahire, Ashwini Bachhav, Bapu Jagdale, Thansing Pawar, Prashant Koli, Dnyaneshwar Sanap, Arun Patil,
Volume 21, Issue 2 (6-2024)
Abstract

Hybrid photocatalysts, comprising both inorganic and organic polymeric components, are the most promising photocatalysts for the degradation of organic contaminants. The nanocomposite, Titania-Polyaniline (TiO2-PANI) was synthesized using the chemical oxidative polymerization method. Various characterization techniques were employed to assess the properties of the catalysts. The ultraviolet diffuse reflectance spectroscopy (UV-DRS) analysis revealed that the TiO2 absorbs only UV light while the TiO2-PANI nanocomposite absorbs light from both UV and visible regions. The X-ray diffraction (XRD) results confirmed the presence of TiO2 (anatase) in both TiO2 nanoparticles and TiO2-PANI (Titania-Polyaniline)  nanocomposite. The phases of the catalysts were verified through Raman, TEM, and SAED techniques where all results are in good agreement with each other. The average crystallite size of TiO2 nanoparticle and TiO2-PANI nanocomposite were 13.87 and 10.76 nm. The thermal stability of the catalysts was assessed by the Thermal gravimetric analysis (TGA) technique. The order of the thermal stability is TiO2 > TiO2-PANI > PANI.  The crystal lattice characteristics were confirmed using Transmission electron microscopy (TEM). The surface area measurements were confirmed from the Brunauer-Emmett-Teller (BET) study and were employed for the evaluation of the photocatalytic efficiency of both, TiO2 nanoparticles and TiO2-PANI nanocomposite catalysts. The energy dispersive spectroscopy (EDS) study was employed for elemental detection of the fabricated materials. While Raman spectroscopy was employed for the chemical structure and the phase characteristics of the materials. The standard conditions for the degradation of the CF dye were 8 g/L of catalyst dosage, 20 mg/L of dye concentration, and a pH of 7. The TiO2-PANI nanocomposite exhibited superior efficiency as compared to pure TiO2 nanoparticles, achieving almost 100 % degradation in just 40 minutes.  
Wed Abed,
Volume 21, Issue 2 (6-2024)
Abstract

Silver/polyvinyl alcohol (Ag/PVA) nanocomposites were fabricated via an electrochemical method. Silver nanoparticles (AgNPs) with varying grain sizes were directly synthesized within PVA polymer matrices at deposition times of 15, 30, 45, 60, and 120 minutes. The integration of AgNPs within the PVA matrix was confirmed through Transmission Electron Microscopy (TEM) and optical absorbance measurements. X-ray Diffraction (XRD) analysis demonstrated the face-centered cubic structure of AgNPs. Furthermore, these prepared nanocomposites exhibited significant antibacterial properties against Bacillus subtilis and Pseudomonas pneumonia, as well as antifungal activity against Alternaria alternata. Remarkably, the AgNPs/PVA nanocomposite exhibited outstanding antifungal efficiency, resulting in an impressive inhibition zone of up to 47 mm.
 
Ahad Saeidi, Sara Banijamali, Mojgan Heydari,
Volume 21, Issue 2 (6-2024)
Abstract

This study explores the fabrication, structural analysis, and cytocompatibility of cobalt-doped bioactive glass scaffolds for potential applications in bone tissue engineering. A specific glass composition modified from Hench's original formulation was melted, quenched, and ground to an average particle size of 10 μm. The resulting amorphous powder underwent controlled sintering to form green bodies and was extensively characterized using simultaneous differential thermal analysis (DTA), Raman spectroscopy, and Fourier Transform Infrared analysis (FTIR). After mixing with a resin and a dispersant, the composite was used in digital light processing (DLP) 3D printing to construct scaffolds with interconnected macropores. Thermal post-treatment of 3D printed scaffolds, including debinding (Removing the binder that used for shaping) and sintering, was optimized based on thermogravimetric analysis (TG) and the microstructure was examined using FE-SEM and XRD. In vitro bioactivity was assessed by immersion in simulated body fluid (SBF), while cytocompatibility with MC3T3 cells was evaluated through SEM following a series of ethanol dehydrations. The study validates the fabrication of bioactive glass scaffolds with recognized structural and morphological properties, establishing the effects of cobalt doping on glass behavior and its implications for tissue engineering scaffolds. Results show, Low cobalt levels modify the glass network and reduce its Tg to 529 oC, while higher concentrations enhance the structure in point of its connectivity. XRD results shows all prepared glasses are amorphous nature, and DTA suggests a concentration-dependent Tg relationship. Spectroscopy indicates potential Si-O-Co bonding and effects on SiO2 polymerization. Cobalt's nucleating role promotes crystalline phases, enhancing bioactivity seen in rapid CHA layer formation in SBF, advancing the prospects for bone tissue engineering materials.

Page 33 from 33    
...
33
Next
Last
 

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb