Search published articles


Showing 544 results for Ti

Farah Zulkifli,
Volume 21, Issue 2 (6-2024)
Abstract

Researchers are increasingly focusing on green synthesis methods for silver nanoparticles due to their cost-effectiveness and reduced environmental impact. In this study, we utilized an edible bird's nest (EBN), a valuable economic resource, as the primary material for synthesizing silver nanoparticles using only water as the solvent. Metabolite profiling of the EBN extract was conducted using LC-QTOF-MS in positive mode (ESI+), revealing the presence of lipids, glycosides, peptides, polysaccharides, and disaccharides. Upon the addition of silver nitrate to the aqueous EBN extract, noticeable color changes from transparent to brown indicated the successful formation of AgNPs. Subsequent characterization of these silver nanoparticles involved UV-Visible spectroscopy, which revealed an absorption peak at 421 nm. Further characterization was carried out using FESEM, ATR-FTIR spectroscopy, and EDX analysis. The involvement of phenolic agents, proteins, and amino acids in reducing the silver particles was confirmed. The synthesized nanoparticles exhibited a spherical shape, and a particle size ranging from 10 to 20 nm. The presence of elemental silver was confirmed by a strong, intense peak around 3 keV in the EDX spectrum. To assess their potential, the antibacterial properties of the silver nanoparticles against Escherichia coli and Staphylococcus aureus were evaluated using the agar diffusion method.
 
Satish Ahire, Ashwini Bachhav, Bapu Jagdale, Thansing Pawar, Prashant Koli, Dnyaneshwar Sanap, Arun Patil,
Volume 21, Issue 2 (6-2024)
Abstract

Hybrid photocatalysts, comprising both inorganic and organic polymeric components, are the most promising photocatalysts for the degradation of organic contaminants. The nanocomposite, Titania-Polyaniline (TiO2-PANI) was synthesized using the chemical oxidative polymerization method. Various characterization techniques were employed to assess the properties of the catalysts. The ultraviolet diffuse reflectance spectroscopy (UV-DRS) analysis revealed that the TiO2 absorbs only UV light while the TiO2-PANI nanocomposite absorbs light from both UV and visible regions. The X-ray diffraction (XRD) results confirmed the presence of TiO2 (anatase) in both TiO2 nanoparticles and TiO2-PANI (Titania-Polyaniline)  nanocomposite. The phases of the catalysts were verified through Raman, TEM, and SAED techniques where all results are in good agreement with each other. The average crystallite size of TiO2 nanoparticle and TiO2-PANI nanocomposite were 13.87 and 10.76 nm. The thermal stability of the catalysts was assessed by the Thermal gravimetric analysis (TGA) technique. The order of the thermal stability is TiO2 > TiO2-PANI > PANI.  The crystal lattice characteristics were confirmed using Transmission electron microscopy (TEM). The surface area measurements were confirmed from the Brunauer-Emmett-Teller (BET) study and were employed for the evaluation of the photocatalytic efficiency of both, TiO2 nanoparticles and TiO2-PANI nanocomposite catalysts. The energy dispersive spectroscopy (EDS) study was employed for elemental detection of the fabricated materials. While Raman spectroscopy was employed for the chemical structure and the phase characteristics of the materials. The standard conditions for the degradation of the CF dye were 8 g/L of catalyst dosage, 20 mg/L of dye concentration, and a pH of 7. The TiO2-PANI nanocomposite exhibited superior efficiency as compared to pure TiO2 nanoparticles, achieving almost 100 % degradation in just 40 minutes.  
Wed Abed,
Volume 21, Issue 2 (6-2024)
Abstract

Silver/polyvinyl alcohol (Ag/PVA) nanocomposites were fabricated via an electrochemical method. Silver nanoparticles (AgNPs) with varying grain sizes were directly synthesized within PVA polymer matrices at deposition times of 15, 30, 45, 60, and 120 minutes. The integration of AgNPs within the PVA matrix was confirmed through Transmission Electron Microscopy (TEM) and optical absorbance measurements. X-ray Diffraction (XRD) analysis demonstrated the face-centered cubic structure of AgNPs. Furthermore, these prepared nanocomposites exhibited significant antibacterial properties against Bacillus subtilis and Pseudomonas pneumonia, as well as antifungal activity against Alternaria alternata. Remarkably, the AgNPs/PVA nanocomposite exhibited outstanding antifungal efficiency, resulting in an impressive inhibition zone of up to 47 mm.
 
Ahad Saeidi, Sara Banijamali, Mojgan Heydari,
Volume 21, Issue 2 (6-2024)
Abstract

This study explores the fabrication, structural analysis, and cytocompatibility of cobalt-doped bioactive glass scaffolds for potential applications in bone tissue engineering. A specific glass composition modified from Hench's original formulation was melted, quenched, and ground to an average particle size of 10 μm. The resulting amorphous powder underwent controlled sintering to form green bodies and was extensively characterized using simultaneous differential thermal analysis (DTA), Raman spectroscopy, and Fourier Transform Infrared analysis (FTIR). After mixing with a resin and a dispersant, the composite was used in digital light processing (DLP) 3D printing to construct scaffolds with interconnected macropores. Thermal post-treatment of 3D printed scaffolds, including debinding (Removing the binder that used for shaping) and sintering, was optimized based on thermogravimetric analysis (TG) and the microstructure was examined using FE-SEM and XRD. In vitro bioactivity was assessed by immersion in simulated body fluid (SBF), while cytocompatibility with MC3T3 cells was evaluated through SEM following a series of ethanol dehydrations. The study validates the fabrication of bioactive glass scaffolds with recognized structural and morphological properties, establishing the effects of cobalt doping on glass behavior and its implications for tissue engineering scaffolds. Results show, Low cobalt levels modify the glass network and reduce its Tg to 529 oC, while higher concentrations enhance the structure in point of its connectivity. XRD results shows all prepared glasses are amorphous nature, and DTA suggests a concentration-dependent Tg relationship. Spectroscopy indicates potential Si-O-Co bonding and effects on SiO2 polymerization. Cobalt's nucleating role promotes crystalline phases, enhancing bioactivity seen in rapid CHA layer formation in SBF, advancing the prospects for bone tissue engineering materials.

Page 28 from 28    
...
28
Next
Last
 

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb