Search published articles


Showing 3 results for DIVANDARI M.

Saghi S., DIVANDARI M., Kharazi Y.h.k.,
Volume 1, Issue 2 (Jan 2004)
Abstract

The effects of gating system and pattern geometry on the metal flow in the lost foam casting (LFC) process have been investigated using glass covered mold and video recording system. Unlike convectional casting process, the type of the gating system showed little effect on fillability in lost foam, but pattern thickness had large effect on mold filling. The mold filling behavior seems to be controlled by the combined influences of heat and mass transfer. The flow rate increased with increasing pattern thickness.
Kharazi Y.h.k., DIVANDARI M.,
Volume 2, Issue 1 (Oct 2005)
Abstract

The mold-filling behavior in the casting of aluminum alloy (A413) using lost foam casting (LFC) was explored. The effects of gate numbers, type of gating and casting thickness on the filling behavior were evaluated. Although, unlike convectional casting process, the gating system showed little effect onfilling ability, casting thickness created a greater effect on the mold filling. In contrast with convectional casting process, the mold filling seems to be controlled by castinggeometry as a consequence of combined influence of heat and mass transfer. The melt used to enter from the first gate instead of last gate which is in contrast with convectional casting process.
Arabi H., DIVANDARI M., Hosseini A.h.m.,
Volume 3, Issue 3 (Jul 2006)
Abstract

In this research the influence of Ti contents on the amounts of inclusions formation and mechanical properties of a high alloy high strength steel, C300, has been investigated. For this purpose several bars were casted under the same solidification conditions, but different amounts of Ti element. All the seven casted bars were homogenized at 1200°C for a period of 2 hours. Then, they were immediately hot rolled after homogenization so that the out rolling temperature was kept in the range of 1000-1200° C. The specimens were then solution annealed at 820°C for hour and finally they were aged for a period of 3 hours at 500°C. The samples were subjected to tensile, impact and hardness tests in order to relate the variation in volume percent of inclusions due to different amount of Ti, to mechanical properties. The results showed that by increasing the amount of Ti a serious decline in toughness properties of the alloy due to increase in inclusion population occurred. So this research provides a very useful information about the relation between volume fraction of inclusions and mechanical properties of a C300 high strength steel.

Page 1 from 1     

© 2019 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb