Showing 2 results for Afm.
A. Davoodi, J. Pan,ch. Leygraf, Gh. R. Ebrahimi, M. Javidani,
Volume 6, Issue 3 (9-2009)
Abstract
Abstract: Localized corrosion of aluminum alloys is often triggered by intermetallic particles, IMP’s. To understandthe role of IMP’s in corrosion initiation of EN AW-3003, efforts were made to combine nano-scale ex-situ analysis ofthe IMP’s by SEM-EDS, SKPFM and in-situ AFM monitoring of the localized attack in chloride containing solution.The results showed that two distinct types of eutectically-formed constituent IMP’s exist the -Al(Mn,Fe)Si and theAl(Mn,Fe) phases. However, the exact chemical composition of the IMP’s varies with the particles size. Volta potentialdifference of surface constituents revealed that IMP’s have a higher Volta potential compared to the matrix, indicatingthe cathodic characteristic of the IMP’s. Noticeably, the boundary regions between the matrix and IMP’s exhibited aminimum Volta potential probably the sites for corrosion initiation. Localized corrosion attack monitored by in-situAFM clearly showed the trench formation occurrence around the large elongated IMP’s in the rolling direction.
Ahmed Kharmouche,
Volume 22, Issue 1 (3-2025)
Abstract
Series of cobalt (Co) thin films with various thicknesses ranging from 50 to 400 nm have been fabricated using thermal heating under vacuum. We explore the impact of the thickness layer on the structural and morphological properties of the films. X-Ray diffractions and atomic force microscopy tools have been used to carry out the structural and the morphological properties of these films. The films are principally c-axis oriented, polycrystalline and with <0001> texture. The crystallites sizes have been found to range from 18.40 to 79.46 nm, and they increase with increasing thickness. The ratio c/a value indicates that Co films are subject to a tensile stress, probably because of the way the film grows. The microstrain is positive and ranges from 1.53 to 3.56%. Atomic force microscopy observations indicate the formation of crystallites according to the Stranski-Krastanov mode. The films topographical surfaces are very smooth, the average root mean square roughness ranging from 0.2 to 1.5 nm.
Keywords: Co; Thin films; XRD; Crystallite size; AFM.