Search published articles


Showing 3 results for Acid Leaching

H. Razavizadeh, Ershad-Langroudi A.,
Volume 1, Issue 1 (3-2004)
Abstract

A new process for recovering scheelite ores comprises producing a concentrate from the ore, then leaching the concentrate with H_2SO_4 in the presence of H_3PO_4 and Na Cl at atmosphericpressure are discussed. Finely purification of the product will be described. The amounts of dissolution of tungsten in acid depend on the parameters such as time, temperature, type and concentration of acid and stilt as well as solid-liquid reaction. These factors were optimized for the result and described in details.
Javad Bahrami, Mohammad Hossein Paydar, Nader Setoudeh, Mohammad Hossein Shariat,
Volume 6, Issue 4 (12-2009)
Abstract

  Abstract

  The effect of mechanical activation using an attrition mill on the particle size of an ilmenite concentrate and its effect on the ability of the concentrate for Iron separation during hydrochloric acid leaching and the kinetics of the dissolution process have been investigated. It was observed that mechanical activation in an attritor significantly enhances the dissolution of iron in hydrochloric acid while have a slight effect on dissolution of titanium. With the mechanically activated ilmenite using an attrition mill, leaching conversion at 90 oC reached to 80%. The kinetic data of leaching of mechanically activated ilmenite was found to follow shrinking core model. Mechanically activating ilmenite using the attrition mill was found to cause the activation energy of leaching to be decrease from 43.69 , found for samples leached without mechanically activated, to 18.23 .


M. Shcikhshab Bafghi, F. Friz' , M. Sakaki,
Volume 11, Issue 1 (3-2014)
Abstract

Vanadium recovery of Thermal Power Plant Ash (TPPA) is an attractive process which simultaneously satisfies the pollution control standards regarding TPPA disposal and provides a valuable source of vanadium for industrial demands. In the present research work, sulfuric acid leaching route has been employed for vanadium recovery from an Iranian TPPA. Effects of acid concentration, temperature, acid/TPPA ratio, leaching time as well as TPPA particle size on the leaching efficiency of vanadium have been investigated. Experimental results showed that leaching efficiency of vanadium is significantly affected by the leaching conditions. The results revealed that with acid concentration of about 15%, temperature around 75 °C, acid/TPPA ratio~15, leaching time about 120 minutes and particle size of 75 - 150 pm, almost 92% of vanadium can be dissolved

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb