Search published articles


Showing 3 results for Natural Aging

A. Shokuhfar, S. Ahmadi, H. Arabi, S. Nouri,
Volume 6, Issue 3 (9-2009)
Abstract

Abstract: Guinier-Preston (GP) zone formation and precipitation behavior of T1 (Al2CuLi) phase during the ageingof an Al-Cu-Li-Zr alloy was studied by differential scanning calorimetry (DSC) technique and electrical resistancemeasurement of the samples. Results show that endothermic effects in the thermograms of the alloy between 180°Cand 240°C can be related to the enthalpy of GPzones dissolution. Formation of GPzones in the structure increasedhardness, tensile strength and electrical resistance of the Al-Cu-Li-Zr alloy. Furthermore, precipitation of T1 phaseoccurred in temperature range of 250ºC to 300ºC whereas its dissolution occurred within the temperature of 450-530ºC. Activation energies for precipitation and dissolution of T1 phase which were determined for the first time inthis research, were 122.1(kJ/mol) and 130.3(kJ/mol) respectively. Results of electrical resistance measurementsshowed that an increase in the aging time resulted in the reduction of electrical resistance of the aged samples.
M. Fallah Tafti, M. Sedighi, R. Hashemi,
Volume 15, Issue 4 (12-2018)
Abstract

In this study, the microstructural variations, mechanical properties and forming limit diagrams (FLD) of Al 2024 aluminum alloy sheet with the thickness of 0.81mm are investigated during natural ageing (T4) treatment. The most formability in Al 2024 can be achieved just after solution treatment, and it is better to perform the forming process, on this aluminum alloy sheet, in this condition. However, in industrial applications, there is usually a postponement for some hours after solution treatment to begin the forming process that it means the forming process should be done at the natural ageing condition. This condition decreases the formability of Al 2024 sheets. To monitor the properties variations in natural ageing condition, FLDs are determined after specific times (e.g., 0.5, 1.5, 4 and 24 hours). The variations in micro-hardness, yield strength, ultimate tensile strength and elongation at break are observed with changing the ageing time. The scanning electron microscope (SEM) investigations illustrated that density and size of precipitates are changed with ageing time. Moreover, the Nakazima test is utilized to study the forming limits considering the natural ageing condition. Results show by increasing the ageing time, up to 4hr, the majority of properties variations could be seen, and from 4hr to 24hr, the variations are changed slower.
Bahram Azad, Ali Reza Eivani, Mohammad Taghi Salehi,
Volume 20, Issue 4 (12-2023)
Abstract

Microstructure evolution and mechanical properties of Zn-22Al alloy after post-ECAP natural/artificial aging were investigated. A homogenization treatment was applied to the casting samples. In addition, after preparing the samples for the ECAP, secondary homogenization treatment was done and then the samples quenched in the water to form a fine grain structure. After 8 passes of ECAP, some ECAPed samples were naturally aged and some ECAPed samples were artificially aged. Natural aging after 8 passes of ECAP showed that Zn-22Al alloy has a quasi-stable microstructure because limited grain growth occurred. Two-phase structure of Zn-22Al alloy prevented excessive grain growth after natural aging. On the other hand, artificial aging after 8 passes of ECAP caused a relatively much grain growth took place. In shorter times of artificial aging, the grain growth rate is faster due to the high surface energy of grain boundaries. On the contrary, as the time of artificial aging increased, the surface energy of grain boundaries decreased, which leads to a decrease in the grain growth rate. In addition, texture evolution was studied after aging artificial. Therefore, the main texture of α and η phases was determined.
 

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb