Search published articles


Showing 7 results for Perovskite

R. Moreno Mendoza, D. A. Landínez Téllez, R. Cardona Cardona, L. A. Carrero Bermúdez, J. Roa-Rojas,
Volume 14, Issue 2 (6-2017)
Abstract

In this work the procedure to the synthesis of Ba2GdSbO6 complex perovskite by the solid-state reaction method is reported. Theoretically a study of the crystalline and electronic structure was performed into the framework of the Density Functional Theory (DFT). The most stable structure is obtained to be a rhombohedral perovskite with a lattice constant a=6,0840 Å.  Due the occurrence of a mean energy gap of 2,84 eV close to the Fermi level for both up and down spin polarizations this material is classifies as insulator.  The effective magnetic moment of material obtained from the calculations was 7,0 mB. The crystalline structure was analyzed through the X-ray diffraction technique and Rietveld refinement of the experimental data. Results are strongly in agreement with those theoretically predicted. Magnetic response was studied from measurements of magnetic susceptibility as a function of temperature. Results reveal the paramagnetic feature of this material in the temperature regime from 50 K up to 300 K. From the fitting with the Curie law the effective magnetic moment was obtained to be 8,1 mB, which is slightly higher that the theoretical value for the Gd3+ isolated cation predicted by the theory of paramagnetism. The energy gap obtained from experiments of diffuse reflectance is relatively in agreement with the theoretical predictions. The dielectric constant as a function of applied frequencies at room temperature was measured. Results reveal a decreasing behavior with a high value of dielectric constant at low applied frequencies


Mohammad Reza Zamani Meymian, Razieh Keshtmand,
Volume 18, Issue 4 (12-2021)
Abstract

Tin oxide (SnO2) is used as an electron transport layer (ETL) in perovskite solar cells with a planar
structure due to its good transparency and energy level alignment with the perovskite layer. The modification
interface of the electron transport layer and the perovskite absorber layer plays an important role in the efficient
charge extraction process at the interface. In this study, planar perovskite solar cells with configuration
(FTO/SnO2/mixed-cation perovskite/CuInS2/Au) were prepared to investigate the effect of UV-Ozone (UVO) treated
SnO2 as ETL on the performance of devices. ETL treatment was performed at different times (0 to 60 min). It is
shown that surface wetting was improved by UVO treating the SnO2 films prior to deposition of the perovskite layer.
The latter improves the contact between the ETL and the perovskite layer, allowing more efficient electron transport
at the interface. Contact angle, SEM, photoluminescence spectra, and the current density-voltage tests were
conducted to characterize the photovoltaic of the cells. The best PSC performance with a power conversion
efficiency of 10.96% was achieved using UVO-treated SnO2 ETL for 30 min, whereas the power conversion
efficiency of the perovskite solar cells with SnO2 ETL without UVO treatment was only 4.34%.

Parasuraman Dhanasekaran, Ramakrishnan Marimuthu,
Volume 20, Issue 1 (3-2023)
Abstract

Fossil fuels served as the main source of energy throughout the 1800s when the industrial revolution got underway. Countries started aiming for carbon-neutral footprints and lowered emissions as environmental degradation became more apparent. Numerous research projects have been undertaken to discover a photovoltaic device that can replace conventional silicon (Si)-based solar cells. Dye-sensitized solar cells (DSSCs) have undergone extensive research during the past three decades. Due to their straightforward preparation process, low cost, ease of production, and low toxicity, DSSCs have seen extensive use. The reader will be able to comprehend the numerous types of TCO layers, physical methods for depositing metal oxide on TCO thin films, materials for fabricating the various DSSC layers, and the various types of dyes included in DSSC as well as their components and structures. The reader's ability to construct the DSSC, gain a general understanding of how it operates, and increase the effectiveness of these devices' potential growth and development paths are all aided by this review. For these technologies to be debated and shown to be appropriate for a breakthrough in consumer electronics on the market, manufacturing, stability, and efficiency improvements must also be addressed in the future. An overview of current DSSC prototype development and products from major firms is presented.
 
Hussein Ali Jan Miran, Zainab Naji Abdullah, Mohammednoor Altarawneh, M Mahbubur Rahman, Auday Tariq Al-Bayati, Ebtisam M-T. Salman,
Volume 20, Issue 1 (3-2023)
Abstract

This contribution evaluates the influence of Cr doping on the ground state properties of SrTiO3 Perovskite using GGA-PBE approximation. Results of the simulated model infer agreement with the previously published literature. The modification of electronic structure and optical properties due to Cr3+ doping levels in SrTiO3 has been investigated. Structural parameters infer that Cr3+ doping alters the electronic structures of SrTiO3 by shifting the conduction band through lower energies for the Sr and Ti sites. Substituting Ti site by Cr3+ results the energy gap in being eliminated revealing a new electrical case of conducting material for the system. Furthermore, it has been noticed that Cr doping either at Sr or Ti positions could effectively develop the SrTiO3 dielectric constant properties. Consequently, Cr3+ is an effective dopant due to enhancing the optical absorption properties, thus opening up new prospects for optoelectronic applications.
Murugesan Suganya, Chembian Kayathiri, Rajavelu Balu, Gandhiraj Vinitha, Zion Delci, Saravanan Chitra Devi, Kaliyamoorthy Devendran, Mathiyalagan Sriramraj,
Volume 21, Issue 0 (3-2024)
Abstract

Perovskite materials are widely studied for their super-conducting, magnetic, catalytic and electro-optic properties. Among them, barium stannate (BaSnO3), finds applications in dielectric and optically active devices, thermally stable capacitors, humidity and gas sensors. In this study, BaSnO3 was synthesized by chemical and greener methods and comparative analyses has been performed on their electrochemical, third order nonlinear, dye deactivation and bacterial suppression properties. Decreased crystallite size was realized for the green synthesized BaSnO3. Energy band gaps were 3.23 and 3.04 eV for BaSnO3 synthesized by normal and greener approach, respectively. The extract mediated sample exhibited increased specific capacitance value. Photocatalytic degradation efficiencies were 78.4% and 89.7%, respectively for BaSnO3 synthesized by normal and greener approach against methyl violet after 90 min of UV light irradiation. Enhanced nonlinear optical parameters were obtained for the extract mediated BaSnO3. Excellent antibacterial efficacy against Proteus vulgaris bacteria was realized for the greener BaSnO3 NPs thanks to the domination of phytochemicals of M. olifera leaf extract.
 
Muhammad Shahzad Sadiq, Muhammad Imran, Abdur Rafai, Muhammad Rizwan,
Volume 21, Issue 2 (6-2024)
Abstract

With increasing energy demand and depletion of fossil fuel resources, it is pertinent to explore the renewable and eco-friendly energy resource to meet global energy demand. Recently, perovskite solar cells (PSCs) have emerged as plausible candidates in the field of photovoltaics and considered as potential contender of silicon solar cells in the photovoltaic market owing to their superior optoelectronic properties, low-cost and high absorption coefficients. Despite intensive research, PSCs still suffer from efficiency, stability, and reproducibility issues. To address the concern, the charge transport material (CTM) particularly the electron transport materials (ETM) can play significant role in the development of efficient and stable perovskite devices. In the proposed research, we synthesized GO-Ag-TiO2 ternary nanocomposite by facile hydrothermal approach as a potential electron transport layer (ETL) in a regular planar configuration-based PSC. The as synthesized sample was examined for morphological, structural, and optical properties using XRD, and UV-Vis spectroscopic techniques. XRD analysis confirmed the high crystallinity of prepared sample with no peak of impurity. The optimized GO-Ag-TiO2 ETL exhibited superior PCE of 8.72% with Jsc of 14.98 mA.cm-2 ,Voc of 0.99 V, and a fill factor of 58.83%. Furthermore, the efficiency enhancement in comparison with reference device is observed which confirms the potential role of doped materials in enhancing photovoltaic performance by facilitating efficient charge transport and reduced recombination. Our research suggests a facile route to synthesize a low-cost ETM beneficial for the commercialization of future perovskite devices.
 
Rakhesh V, Sreedev P, Ananthakrishnan A,
Volume 21, Issue 2 (6-2024)
Abstract

Organic and Perovskite solar cells have attracted a lot of attention recently since they can be used with flexible substrates and have lower manufacturing costs. The configuration and materials employed in their construction, including the Electron Transport Layer (ETL), active layer, electrode contact, and hole transport layer greatly influence the stability and performance of these solar cells. This research focuses on the simulation of solar cells, specifically utilizing zinc oxide (ZnO) as the electron transport layer. A 0.1 molar ZnO thin film was prepared from Zinc acetate salt and was deposited on a glass substrate using the cost effective Successive Ionic Layer Adsorption and Reaction (SILAR) method. In-depth investigations were carried out on several factors, including structural, surface, optical and numerical analysis. The obtained parameters were utilized in the General-Purpose Photovoltaic Device Model (GPVDM) software to perform numerical simulations of the organic solar cell and Perovskite solar cell. Both Organic solar cells and Perovskite solar cells were designed numerically and through careful observations, electrical parameters like Open circuit Voltage (Voc), Short circuit current (Jsc), Fill Factor (FF), and Power Conversion Efficiency (PCE) were identified. The studies indicate the promising performance of simulated solar cells with SILAR-synthesized ZnO thin film as the ETL.
 

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb