Search published articles


Showing 3 results for Chitosan

Amanda C. Juraski, Márcia M. Simbara, Vera Paschon, Sônia M. Malmonge, Juliana K.m.b. Daguano,
Volume 19, Issue 2 (6-2022)
Abstract

The success of a drug delivery system relies heavily on its interaction with cells from the target tissue. The range of applications for ibuprofen-loaded chitosan (ICH) films is widening, mainly due to the biodegradability of chitosan (CH) films and ibuprofen’s safety and versatility, with a particular interest in exploring it as neural drug delivery system. In this study, CH and 12% (w/w) ICH films were prepared through the solvent cast, and characterized regarding their physicochemical composition, surface and bulk morphology, drug release profile, and cell viability of primary neurons from the rat spinal cord. Fourier transform infrared spectroscopy (FTIR) analyses demonstrated that both groups had a similar composition. According to scanning electron microscopy (SEM) images, ibuprofen particles were entrapped on the surface and inside the polymeric matrix. In vitro drug release profile indicated that release starts as diffusion within the first hours, is best fitted by the Higuchi model, and continues for at least 30 days, in agreement with the Korsmeyer-Peppas model. Therefore, ibuprofen is first released through the diffusion process of the particles found on the surface and later through a combination of diffusion and erosion of the chitosan matrix. Regarding in vitro cell viability of primary neurons, CH and ICH extracts are non-toxic, as both groups displayed cell viability over 50%. ICH films are mildly reactive in neuronal cells, but do not cause severe cell death i.e., it allowed non-cytotoxic neuronal and glial differentiation. These findings enhanced our understanding of ICH films as a safe neural drug release system to be explored.
Salma Bessalah, Samira Jbahi, Mouldi Zagrouba, Hajji Sawsen, Amel Raoufi, Mustpha Hidouri,
Volume 19, Issue 2 (6-2022)
Abstract

Abstract
In this research, Gelatine (GEL)/ Chitosan (CH) wound dressing was prepared and irradiated with gamma rays from 60Co source for wound healing applications. GEL-CH composite characterization and functional properties were determined. The structural changes occurring after γ-irradiation at doses from 5 to 25 kGy were reported by physico-chemical techniques such as Electron Paramagnetic Resonance (EPR), Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Electrochemical Impedance Spectroscopy (EIS) studies. The antioxidant capacity was studied using DPPH (1,1-diphenyl-2-picrylhydrazyl free radical) scavenging and the antibacterial activities of Staphylococcus aureus and Escherichia coli were observed using liquid medium. Results revealed that EPR spectroscopy of un-irradiated GEL-CH showed 2 paramagnetic centers correspond to g=2.077 and g= 2.079. After irradiation, no active centre was appeared. A dose-dependent decrease in the central signal intensity was detected, then the EPR signal intensity almost disappears at 20 kGy. Gamma rays caused a slight increase in ion conductivity. FTIR suggest a slightly crosslinking phenomenon at 20 kGy. The XRD analysis does not show peak indicating crystallinity between a range of 2θ (15–30°). Moreover, γ-irradiation elevated the Scavenging DPPH radical activity (0.75 ± 0.07%). Gamma rays did not affect the antibacterial activity of GEL-CH wound dressing against pathogenic bacteria. The innovative results showed that the required γ-radiation for sterilization was ranged from 5 to 25 kGy. It permits to improve the physico-chemical and biological properties and maintain the native structural integrity of the GEL/ COL wound dressing
Shadi Moshayedi, Hossein Sarpoolaky, Alireza Khavandi,
Volume 19, Issue 2 (6-2022)
Abstract

In this paper, chemically-crosslinked gelatin/chitosan hydrogels containg zinc oxide nanoparticles (ZNPs), were loaded with curcumin (CUR), and their microstructural features, physical properties, curcumin entrapment efficiency, and drug release kinetics were evaluated using scanning electron microscopy (SEM), the liquid displacement method, and UV–Vis spectroscopy. The in vitro kinetics of drug release was also studied using First-order, Korsmeyer-Peppas, Hixon-Crowell, and Higuchi kinetic models. The SEM micrographs confirmed the formation of highly porous structures possessing well-defined, interconnected pore geometries. A significant reduction in the average pore sizes of the drug-loaded hydrogels was observed with the addition of ZNPs and CUR to the bare hydrogels. High value of drug loading efficiency (~ 72 %) and maximum drug release of about 50 % were obtained for the drug-loaded scaffolds. It was found that curcumin was transported via the non-Fickian diffusion mechanism. It was also shown that the kinetics of curcumin release was best described in order by Hixon-Crowell, Higuchi, and Korsmeyer-Peppas models, demonstrating that drug release was controlled by diffusion, degradation, and swelling of the drug carrier. However, lower degree of fitting was observed with First-order kinetic model.


Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb