Showing 4 results for Solid State
A. Ataie1,, S. Heshmati-Manesh1,, S. Sheibani1,, G. R. Khayati,y. Firozbakht,
Volume 5, Issue 1 (3-2008)
Abstract
Abstract: In this paper solid state reduction of high carbon ferrochromium-chromite composite
pellets in the temperature range of 900-1350°C was investigated. A two stage reduction
mechanism is proposed. The first stage is likely to be controlled by the chemical reaction with
activation energy of 127.2kJ/mol. In the second stage, solid state diffusion of carbon through the
reaction product layer is suggested to be rate controlling. The activation energy of this stage was
calculated to be 93.1kJ/mol. The reduction process was found to be favored by high temperatures
as well as high vacuum. The results also show that pre-milling of initial mixture has a negative
effect on the reduction degree.
M. Krishna, R. Nandini, A.v. Suresh, K. Narasimha Rao ,
Volume 15, Issue 2 (6-2018)
Abstract
An efficient solid-state approach was established to synthesize (K0.5Na0.5) NbO3 ceramics using calcination kinetics and microwave assisted sintering. Milling of carbonate and oxide raw materials were carried out for 15h to obtain homogeneous nano particles. The crystallite size of 5.30 nm was obtained for the KNN system after calcination through optimized parameters and observed to be stoichiometric in nature. The obtained nano particles showed phase transition from orthorhombic to tetragonal crystal structure without any secondary phases. The high relative density and tetragonality ratio of KNN ceramics obtained through optimized sintering parameters yielded with significant piezoelectric and ferroelectric properties.
Najwa Gouitaa, Lamcharfi Taj-Dine, Bouayad Lamfaddal, Abdi Farid, Mohamed Ounacer, Mohammed Sajieddine,
Volume 18, Issue 2 (6-2021)
Abstract
Amir Hojjati Lemraski, Ali Sedaghat Ahangari Hossein Zadeh, Rahim Naghizadeh, Hudsa Majidian,
Volume 21, Issue 4 (12-2024)
Abstract
Cordierite ceramics are of interest for various applications due to their properties such as low thermal expansion coefficient and high thermal shock resistance. However, due to the narrow range of sintering temperature, attempts have been made to synthesize it using different additives. In this way, titania and tialite have been added in different amounts to the initial raw material mixture (talc, kaolin, and synthetic alumina). In this research, the initial powders (talc, kaolin, and synthetic alumina) were mixed in a planetary ball mill using different amounts of TiO2 and tialite. The mixtures were sintered at 1250, 1300, and 1350 °C for 3 h. X-ray diffractometry and fluorescence, thermal analysis, microstructural observation, density, and cold compressive strength (CCS) were used to evaluate the sintered samples. Phase analysis revealed the presence of the cordierite phase along with small amounts of spinel. With increasing sintering temperature and titania addition, the amount of spinel decreased and the amount of cordierite phase increased. The real density increased with increasing titania additive content, but at higher titania contents, microcracks were observed in the SEM micrographs. By adding 15 wt% of tialite to the initial batch, the compressive strength has been increased by 88% compared to the pure cordierite sample.